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A bifurcation study is made of laminar flow in curved ducts. The problem is 
formulated in a curvilinear coordinate system, and the governing equations, after 
orthogonal mapping is applied, are solved numerically by an iterative finite- 
difference method. Many computer runs were made with various duct cross-sections 
ranging from a circle to a square, to learn the transition of bifurcation structure with 
this change in cross-section and to reconcile the differences between them. In 
addition, a simpler technique is proposed to generate symmetric four-cell solutions 
in a circular pipe and a means is put forward to stabilize four-vortex structures in a 
complete cross-section. 

1. Introduction and outline of approach 
Laminar flow in a curved duct has been a research topic for nearly a century. As 

a result, a voluminous literature is now available, some of which is summarized in a 
review article by Berger, Talbot & Yao (1983), including the early work on 
bifurcation structure of fully developed laminar flow in a curved circular pipe. Since 
then, the problem of solution bifurcation has attracted considerable attention and 
added a new facet to an old problem. Since the non-uniqueness of laminar flow in a 
curved duct is a relatively new topic, not every aspect of the problem is completely 
known, and the purpose of this study is to close some of these gaps. The question of 
whether the solution branch of a four-vortex structure is stable without symmetry 
conditions will also be examined briefly. 

Following the original work of Dennis & Ng (1982) and Nandakumar & Masliyah 
(1982), other papers to appear include Winters & Brindley (1984), Nandakumar, 
Masliyah, & Law (1985), Yang & Keller, (1986), Winters (1987), Soh (1988), 
Daskopoulos & Lenhoff (1989), and Goering (1989). Most of these studies were 
carried out in a half-cross-section with symmetry conditions imposed on the 
geometric symmetry plane. One exception is Winters’ work which includes 
asymmetric solutions. The present study is also limited mostly to the half-cross- 
section computations, although some efforts were made to attain solutions in a full 
domain. Numerical calculations indicate that these four-cell solutions cannot in 
general be maintained except for some solutions of the so-called intermediate type 
near the limit point. If for some reason a four-cell structure in a complete cross- 
section is desirable, its presence can be preserved by means of a short splitter plate 
at the outer bend. The workability of this device will be demonstrated via numerical 
examples. 

The computational methods used in earlier studies are mostly based on the finite- 
element, collocation or Fourier series methods together with the continuation 
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FIGURE 1. Coordinate system. 

method by Keller (1977). However, since the most commonly used method for 
solving the Navier-Stokes equations for flow in a curved pipe is the finite-difference 
method based on iteration, it will be convenient if the same computational method 
can be used to study the non-uniqueness of solutions. This procedure is found to be 
feasible and will be discussed later. There are, however, disadvantages, such as only 
stable solutions can be obtained by the present method, and a precise prediction of 
singular points is not possible because the convergence of an iteration procedure a t  
such point is not defined. 

The flow in a curved square duct undergoes a transition from a two-cell structure 
to a four-cell structure automatically as the Dean number increases above a certain 
critical value. Thus, finding the second family of solutions requires no special effort. 
In  a curved circular pipe, unlike in a square duct, this transition does not take place 
spontaneously and the primary solutions of a two-cell structure do not terminate. 
Thus some procedure has to be found to generate a t  least one solution in another 
family. (Singular points in a bifurcation diagram can be located by more rigorous 
methods to connect different branches. See, for example, Yang & Keller 1986 or 
Winters 1987.) Once this solution is available, it can be used as a starting profile for 
others. The procedure proposed by Nandakumar & Masliyah (1982) is very useful 
and gives, in fact, the earliest example of dual solutions in a curved circular pipe by 
a systematic means. We come across another method, which can also generate a dual 
solution and will be discussed later. 

The state diagram plotted by Winters for a curved square duct includes several 
families of solutions. If we exclude the branch for asymmetric solutions and the 
disconnected branch for symmetric solutions, the remaining curve comprises the 
usual two-cell and four-cell solutions with two limit points and the intermediate 
solutions connecting them. The characteristics of this curve are different from those 
given by Daskopoulos & Lenhoff, which seems to imply that the pattern of a state 
diagram is a function of duct geometry. One purpose of the present study is, 
therefore, to investigate the transition of the solution structure from a curved square 
duct to a curved circular pipe. Thus, intermediate geometries are required. The 
equation described by Roache (1976, p. 302) for a super-ellipse, which changes the 
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shape smoothly from a circle to a square by varying a single parameter, fulfils this 
need. 

2. Governing equations and boundary conditions 
The governing differential equations for a steady incompressible fully developed 

laminar flow in a planar curved duct of arbitrary cross-section are to be derived here. 
The coordinate system is depicted in figure 1. The centreline of the duct is referred 
to as s, along which there are three unit vectors. The tangent and normal vectors T 
and N are functions of s, while the binormal vector B is independent of s. The duct 
cross-section, which is perpendicular to the centreline, is defined by the coordinates 
x and y with the origin at duct centre. A point P in the duct is given by a position 
vector 

where 6 and 7 are the boundary-conforming curvilinear coordinates to be obtained 
through mapping. 

p = R(s )  - 4 L 7 )  N(s) + Y(L 7) B(s), 

Using the Serret-Frenet equations of a two-dimensional curve, 

d N  1 dB - = T  - = - - T  - = O  dR 
ds ' ds L ' ds ' 

we have 
ap ap ap 

dP = -ds+-dg+-dq = 
as a6 a7 ds T+d[ag+d7a,,, 

where L is the radius of curvature of s, and a[ and a,, are two vectors defined as 

a ---N+-B, ax ay a,,=--N+-B. ax ay 
6 -  ag ag a7 a7 

The triad T, a[ and a,, can be made mutually perpendicular, if the following condition 
is imposed : 

which is recognized to be the metric coefficient g,, = 0. In other words, if the 
governing equations are expressible in an orthogonal coordinate system s, ( and 7, 
an orthogonal mapping between x, y and g, 7 is necessary. Given this condition and 
taking the scalar product, we obtain 

dP-  d P  = hi ds2 + h: dE2 + hi dy2, 

where h,, h,, and h, are the usual notation for metric coefficients given by 

With the orthogonal metrics available, the Navier-Stokes equations in coordinates 
s, ( and 7 reduce to 

a a 
- (h, h, U )  +- (h, h, V )  = 0, 
aE a7 
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Equation (1) is the continuity equation and (2)-(4) are the momentum equations. In 
these equations U,  V and Ware the velocity components in the at, a, and Tdirections, 
p is the pressure, p the density, and v the kinematic viscosity of the fluid. D‘, E and 
H’ denote 

I n  deriving these equations, the flow quantities are assumed to be independent of s, 
except p which assumes the following form : 

p = -Gs+p‘( t ,7) ,  

where G denotes the constant pressure gradient in the streamwise direction. 
The above equations can be substantially simplified by introducing a stream 

function and by eliminating the pressure, resulting in a vorticity equation. These 
vorticity-stream function equations, written in dimensionless form, become 

where @ is the stream function, D the vorticity, and L> the Dean number. The 
symbols A‘, E and w are given by 

and other dimensionless quantities are 
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Note that all length-related quantities, such as x, 5, h, . . . , though denoted by the 
same symbols, are made dimensionless by referring to the 'radius' a (figure l ) ,  except 
h, and 7 which are already dimensionless (see $3).  

As in a polar coordinate system, (5)-(7) are singular at the origin because the 
metric coefficient h, will vanish there. Thus, these equations are recast in local 
Cartesian coordinates there. This singularity also occurs in the process of mapping, 
and will be discussed in $3. 

To these equations, we add the boundary conditions 

at 6 = 1 ,  i.e. the duct surface. The condition a@/at = 0, which ensures that v = 0 at 
the duct surface, is implemented implicitly in deriving the boundary condition for 52. 
This is a common practice, for (5) is solved as a Dirichlet problem. An exception is 
Greenspan's (1973) computation in which it is imposed explicitly, and the system is 
then over specified. Our experience, after some experimental computations, seems to 
indicate that this extra boundary condition will at  least hamper convergence, and 
may cause slow divergence, especially for non-circular cross-sections. For this reason, 
no further attempts were made in this respect. 

For the half-cross-section computations, symmetry conditions are specified on the 
geometric symmetry plane. These are 

@ h Y )  = -@@, -Y), Q(Z,Y)  = -Q(x, -YL N G Y )  = w(2, -Y) (8) 

where x and y are the coordinates in figure 1. 

3. Orthogonal mapping 
As mentioned earlier, one can represent the governing Navier-Stokes equations for 

a curved duct in an orthogonal coordinate system, provided that there is an 
orthogonal transformation between x, y and 5, 7. Here, we further require that this 
transformation be boundary-conforming, and we assume that curved ducts all have 
'super-circular' cross-sections. A super-circle is defined by (Roache 1976, p. 302) 

(~/a)"+(y/a)~ = 1 ,  1 < n < co, (9) 

where a is the 'radius' and n is a positive parameter but not necessarily an integer. 
In  order to see the change from a circle (n = 2) to a square (n+ OO), several 
configurations are plotted in figure 2. As n increases, the configuration becomes fuller 
and eventually approaches a square with almost sharp corners, whereas as n 
decreases the configuration becomes thinner and approaches a rhombus in the limit 
n =  1 .  

To construct a boundary-conforming orthogonal grid in super-circles, the weak- 
constraint form of Ryskin & Leal's (1983) method is used. The basic method has been 
described well in their paper and thus we only need add a few points relevant to this 
problem not included in their paper. 

The grid is constructed in a quarter-domain with symmetry conditions imposed on 
the horizontal and vertical axes. This is chosen because, according to Chikhliwala & 
Yortsos ( 1985), symmetry promotes accuracy, and coordinate nodes are specified 
along all boundaries, including a small circle surrounding the origin. This small circle 
is to exclude the singularity a t  the origin. The 6-coordinate varies from zero at  the 
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FIGURE 2. Depiction of super-circles of various exponents. 

- 6  
FIGURE 3. A 81 x 73 orthogonal grid in a half-super-circle of n = 6. 

origin to unity a t  the boundary which is equally divided in the transformed plane, 
while the 7-coordinate corresponding approximately to the angle in the polar 
coordinates, varies from zero at the horizontal axis to +x a t  the vertical axis, which 
is also equally divided, The orthogonality of grid lines is examined by evaluating the 
intersection angle of two grid lines. For n < 6, the maximum departure from 
orthogonality in a 81 x 37 quarter-domain grid is about 0.7". As n increases, the error 
also increases because relatively sharp corners begin t o  form. This deterioration can 
be controlled if more mesh points are placed at the corner. A representative pattern 
for a 81 x 73 orthogonal grid in a half-domain with n = 6 is shown in figure 3. 

4. Finite-difference procedures 
The transformed Kavier-Stokes equations ( ( 5 ) - ( 7 ) )  are to  be solved approximately 

in a rectangular ( 6 , ~ )  domain by means of a finite-difference technique, some details 
of which follow. 

Equation (5), which is linear and of the Poisson type with Dirichlet boundary 
conditions, poses no problem in computation. The dependent variable @ is 
approximated by the central difference and the matrix of the resulting algebraic 
equation along each line is tridiagonal, which is solved by the line-sweeping Thomas 
algorithm from 7 = 0 to 7 = x in one direction only. 

Equations (6) and (7)  are more complex and, in particular, involve convective 
terms, which cannot be approximated by the central difference but may be 
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approximated by the quadratic upwind discretization method (QUICK) of Leonard 
(1979). This practice requires two grid points beyond each computational molecule, 
instead of one for the central difference, which means that information has to be 
supplemented beyond the boundary. To avoid this complication, the quadratic 
interpolation is applied in the interior region two grid points away from the 
boundary, and the hybrid method of Spalding is used in the space between this region 
and the boundary. 

The finite-difference form for the variable w in (6) in the interior region expressed 
in common notation is 

A p wp = A, WE +A, WW +AN WN +As WS 

+AE,wEE + Aww www +ANN wNN +Asswss + s u .  

The symbol wp denotes the discrete value of w at  the node point P, which is the 
centre of a computational molecule, whose faces are placed halfway between P and 
four neighbouring points. The symbols wE, ww, wN, and ws are the discrete values of 
w at  the node points to the east, west, north, and south of point P, and wEE is that 
of w at the point to the east of the point E. Other quantities www, wNN, and wss are 
designated in a similar manner. 

The finite-difference coefficients A,, A,, . . .Ass are the results of discretizing the 
convective and diffusion terms; the symbol Su denotes the source term. The 
expressions for these coefficients are fairly long and are not shown here. The 
procedure is, however, straightforward and the details are available in Huang & 
Leschziner (1983), including the test to determine the upstream neighbours. The 
finite-difference form of (7)  is attained in a similar manner and assumes a similar 
form. 

The matrix of this algebraic equation along each line is pentadiagonal and thus a 
line-sweeping pentadiagonal matrix algorithm is used to find solutions for this 
system. (This algorithm for a pentadiagonal matrix applies equally well for a 
tridiagonal matrix. Thus no distinction is needed for points next to a solid 
boundary.) The sweep is carried out in both directions much like the AD1 method. 
Shortly after the QUICK method was introduced, investigators experienced 
convergence problems and have devised algorithms to overcome them. This turned 
out to be unnecessary if an alternating-direction sweep is adopted (P. G. Huang 
1987, personal communication). 

The sequence of computation in one cycle is to solve y? first and then w and 52, 
using the most recent variables available. These variables are under-relaxed in each 
sweep. The cycle is repeated as necessary, until both the maximum error 6 of local 
quantities and the relative residuals in the difference equations become sufficiently 
small. 

A maximum error S is given by 

where gi , j  is a local quantity, and k and k- 1 denote the kth and (k - 1)th iteration. 
A relative residual is defined by 

where L is a difference operator to represent the finite-difference forms of (5)-(7), and 
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the summation is over the entire region with M and N denoting the total grid points 
in the c- and 7-directions. Normally iterations terminate if all three relative residuals 
become less than 5 x - 5 x lop5. However, convergence becomes less certain as 
the bifurcation point is neared and the procedure has to be tightened. This point will 
be discussed later. 

In the course of numerical computations, a computer code in the appendix of Sidi 
(1991) became available and was applied often to accelerate our iterative solutions 
especially for computations involving a fine grid. This code requires no change of 
user’s program, which is treated merely as a subroutine, and uses the vector 
acceleration methods such as the reduced rank extrapolation to speed up 
convergence. No acceleration procedure is, however, applied when the solution is 
near a singular point for fear of an adverse effect on the final result. 

Equations (5)-(7) as shown are not valid a t  the origin. This singularity is caused 
by the choice of the coordinate system and can be removed by recasting the 
equations in a local Cartesian coordinate system. Only the quantity w needs to be 
determined at  the origin in a half-domain, since $ and SZ are zero. However, all three 
have to be determined in a full domain. 

5. Generation of four-vortex solutions and accuracy comparison 
It is well known that the finite-difference method can accurately predict two-cell 

and four-cell solutions. What is not certain is whether sufficient accuracy will be 
achieved for solutions near the singular points. To answer this question, we compare 
the results calculated here with those of Winters (1987), Dennis & Ng (1982), and 
Daskopoulos & Lenhoff (1989). 

Winters’ calculation deals with a square duct in which solutions will undergo an 
abrupt change from two-cell forms to four-cell ones as D increases. Thus, the location 
of the limit point will appear automatically, at least approximately. Such is, 
however, not the case for flows in a circular pipe. Four-cell solutions will not normally 
simply appear as the Dean number increases, and so some means of generating them 
becomes necessary. 

We begin with an accuracy comparison with Winters’ results. For this we 
essentially use Winters’ governing equations recast in terms of @ and 52, similar to 
(5)-(7). The critical region where a disagreement may occur is probably in the 
proximity of singular points. For this reason, we selected Winters’ figure 4 ( b )  for a 
detailed comparison (see figure 4). This is a state diagram with two singular points, 
which depicts the variation of the central axial velocity xs against the axial pressure 
gradient q. The locus corresponding to two-cell solutions is labelled S, and terminates 
at the limit point L,, while that corresponding to four-cell solutions is labelled S, and 
begins from the limit point L,. A curve S ,  that connects these two loci is another 
branch also corresponding to four-cell solutions but of an ‘intermediate ’ type. For 
clarity and convenience, we prefer to use Winters’ variables. These variables can be 
converted to the present ones via the formulae 

D W O  
q=- X S = ( z s ) t ’  (24: ’ 

where wo denotes the axial velocity at  the origin. The curvature 6 in these calculations 
is equal to 0.02. The present solutions are plotted in figure 4 as symbols and Winters’ 
as lines. 
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FIQURE 4. Comparison with Winters’ state diagram: -, Winters’ curve; A, present two-cell 
solutions ; v, present intermediate-type solutions ; 0,  present four-cell solutions. 

The agreement at first glance is seen to be very good, especially along S,. There are, 
however, two differences : ( a )  The limit points L, and L, were not predicted precisely. 
This is expected, since the present method will cease to function at or even near a 
singular point. (b )  A close look at figure 4 reveals that there are two solid symbols 
along curve S,, whose secondary flows involve two pairs of vortices of which the 
second pair is small and extremely weak. According to Winters’ classification, these 
are of the intermediate type and should be situated on S, instead of $3,. This shift of 
the intermediate-type solutions to the locus of two-cell structure was also observed 
by Soh (1988). The overall agreement appears, however, to be reasonable. 

All the present solutions shown in figure 4 were computed in a 81 x 41 grid in a half- 
domain with symmetry conditions imposed on the symmetry plane. A coarser grid, 
41 x 21, can predict fairly accurate results away from singular points but near them 
a finer grid is needed. The probable reason is that the transformation from a two-cell 
pattern to a four-cell one (and vice versa) takes place slowly in an iteration process. 
The incipiency of the secondary pair usually occurs in a small area at the outer bend, 
and a coarse grid will conceivably hinder its development. 

In  Winters’ state diagram for a square duct, there are two disconnected solution 
loci for symmetric two-cell and four-cell solutions at somewhat higher Dean numbers 
than those in figure 4. Originally it was thought that we might leap over from S, or 
S, to these solutions by using the so-called secant predictor. This turned out to be 
unworkable; these solutions, though symmetric, may be of a different type and could 
not be reached by the secant predictor used in this study. 

We next turn our attention to the flow in a curved circular pipe. As indicated 
earlier, it  is not a trivial matter to secure the first four-cell solution. The usual 
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FIQURE 5. Cross-flow vectors of a four-cell solution in a half-domain with a solid surface 

replacing a portion of the line of symmetry. 

procedure, short of an unexpected emergence as happened to Dennis & Ng, is the one 
proposed by Nandakuma & Masliyah (1982). Another procedure, which can give a 
four-cell solution, is as follows. This procedure is based on an observation that 
solutions in a half-domain with symmetry conditions imposed everywhere on the 
symmetry plane except a portion of it a t  the outer bend, possess four-cell structures 
(figure 5) .  This property can now be utilized to produce a four-cell solution. In the 
present procedure, the steps are as follows. (a)  A two-cell symmetric solution is 
assumed to be available a t  a Dean number sufficiently high (D = 2000 for example) 
for a four-cell solution to prevail. ( b )  Change a portion of the symmetry plane a t  the 
outer bend from symmetry conditions to  a solid surface ; perform calculation by 
iteration. In  this manner a four-cell solution will gradually emerge. Stop the 
computation when it becomes nearly convergent. (c) Change this portion from a solid 
boundary to symmetry conditions and carry out the computation as usual until 
convergence is reached. Our experience shows that the four-cell solution obtained in 
step ( b )  will undergo adjustment but will not revert to a two-cell structure. 

The availability of this solution enables us to make use of the so-called secant 
predictor method to  extend the locus for four-cell solutions. In these calculations, 
terms of O(s) and higher in (5)-(7) were neglected in agreement with the assumptions 
made by Dennis & Ng (1982) and Daskopoulos & Lenhoff (1982). To calculate the 
friction ratio, it  is convenient to define a mean axial velocity written in the 
generalized coordinates as 

The friction ratio defined by Dennis & Ng can now be written as 

y c = -  D - 
ys 8a’ 

where the subscripts c and s denote curved and straight pipe respectively. 
Comparison of this friction ratio between the present calculation and theirs is shown 
in table 1. 

In  obtaining the present results, the grid used is basically of 81 x 37 points in a 
half-domain, except for two runs for the four-cell solutions. This basic grid, having 
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FIGURE 6. Comparison of Daskopoulos & Lenhoffs (1982) state diagram (-) with the present 
solutions (A, 81 x 37 grid; 0 ,  81 x 73 grid). 

5 (two-cell solution) 3 (four-cell solution) 
Y S  Y S  

D Dennis & Ng Present Dennis & Ng Present 

1000 1.548 1.548 1.548 1.546 
2000 1.847 1.844 1.833 1.829 
3000 2.064 2.060 2.046 2.042 
4000 2.237 2.231 2.218 2.216 
5000 2.377 2.375 2.366 2.364 

TABLE 1. Comparison of friction ratios 

only 37 points in the 7-direction (circumferential), is too sparse, especially for four- 
cell structures. A finer spacing is needed, as will become more evident later. The test 
for termination of computation is usually RES < 5 x The agreement shown in 
this table is seen to be reasonable, although almost every predicted friction ratio in 
the present computation is somewhat lower than its counterpart from Dennis & Ng. 

In view of the fact that a friction ratio represents merely a global property of the 
flow and lacks sensitivity to local variations, any discrepancy will probably show up 
more in a state diagram. For this reason, we next consider in figure 6 Daskopoulos 
& Lenhoffs plot. Again we use their coordinate system and place the present data 
points over their solutions loci. These points are taken from the same computer runs 
used for table 1 ; the state variable shown is the velocity component u at  x = 0.9 and 
y = 0, the choice of Daskopoulos & Lenhoff. 

As seen, the agreement for the two-cell solutions appears to be very good. 
However, our predicted state variables for the four-cell solutions are all somewhat 
higher than their locus and become progressively worse as D increases. We attribute 
this to the insufficient number of grid points in the 7-direction (5" intervals). To show 
that this is the case, three runs at  D = 4000, 5000, and 6000 were repeated using a 
81 x 73 grid instead of the usual 81 x 37 one and are depicted as diamonds in figure 
6. The agreement is improved. Thus, is appears that there is a need for a fine grid 
when D becomes large. 

It seems clear from figure 6 that two solution loci will meet somewhere in the 
region 0 < D < 1000, their intersection being the limit point. The actual process of 
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locating a branching point on a solution locus in this case by an iterative procedure, 
even approximately, is not easy, because there is no abrupt jump from one solution 
to another. The main difficulties are that not only is an iterative procedure not 
defined at or even near a singular point, but a secondary (four-cell) solution near the 
branching point is ‘unstable’ and will switch prematurely to a primary (two-cell) 
solution due presumably to  a small disturbance. Moreover, the incipiency of the 
switch process also depends upon the test for the relative residual for termination 
(RES). For instance, if RES < 4 x the switch will take place a t  957 < D < 959. 
As RES increases (decreases), the switch will occur somewhat later (sooner). (The 
upper bound here for D implies that  a t  this value the solution is a four-cell structure, 
but as D is reduced in one downward step to the lower bound it becomes a two-cell 
solution.) The inability to locate precisely the limit point is a deficiency of this 
procedure, but should not seriously hamper our attempt to investigate the process 
of solution transition in the change in cross-section from a circle to  a square. We will 
demonstrate in the next section that this transition takes place fairly rapidly as the 
geometry evolves from nearly circular (n  = 2.5) to  circular (n  = 2). 

6. Curved duct of super-circular cross-section 
We have seen so far two types of bifurcation in a curved duct. The first is 

exemplified by figure 6 for a circular pipe, and the second by figures 4 or 7 for a square 
duct with the presence of a hysteresis. (For convenience, the occurrence of a jump 
and a double-valued appearance in a state diagram is referred to as hysteresis here.) 
Two questions may now be raised : whether there exists a relationship between these 
two types of flow, and, if this relationship exists, how they are related. In this and 
the next sections we make an attempt to answer them by constructing a family of 
solution loci for various super-circular shapes ranging from a circle to a near square. 
The disposition of these curves will then reveal the nature of this problem. 

The configurations in this series of computations vary from n = 10 to 1.75 
including n = 2, where n is the exponent in (9). The Dean numbers vary from 300 to 
5000. If hysteresis exists, some Dean numbers may be repeated for both two-cell and 
four-cell solutions. To initiate a calculation for a new index n, we need a starting 
profile which is obtained by transferring a known solution at  a neighbouring n to the 
grid of the desired n, whose D value is kept the same and chosen to be not near the 
singularity. Three different grid distributions are used in the computations. The 
81 x 37 grid is most often used for calculation of two-cell solutions, while the 41 x 73 
or 81 x 73 grid is generally used for four-cell solutions. If the calculation is near a 
limit point, we always use the finest grid, 81 x 73. The curvature ratio E for every 
calculation in this series is, however, fixed at E = 0.02 (Winters’ choice) to  make 
comparisons less ambiguous. 

Since this series comprises a large number of computer runs, only a few are selected 
for discussion. One of these is a super-circular cross-section duct of n = 10, denoted 
a pw 10 duct; there are similar designations for other shapes. Since this closely 
resembles a square duct apart from the corners, one expects that  there are also 
similarities in flow properties, and the state diagram in figure 7 convinces us that 
such is the case. Notice that the state variable in this figure is chosen to be the 
velocity component u a t  x = 0.9 and y = 0 as in figure 6 instead of xs, since it is felt 
that the former is a more responsive variable. 

Next we select three representative cases in a pw 10 duct and show their flow 
patterns in figure 8. These are a two-cell, an intermediate-type and a four-cell 
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FIGURE 7 .  State diagram for a square duct (A),  a square duct intermediate type (V) and 

pw 10 duct (super-circle of 12 = 10) (-). 

solution. Here and hereafter we usually illustrate the secondary flows by plotting 
velocity vectors projected on the cross-sectional plane and scale them to fit the 
figure. For instance, the same scaling factor is used for figures 8 (a) ,  8 (c) and 8 ( e )  to 
bring out the swiftness of the motion at a higher Dean number, with the exception 
of the velocity vectors in the second pair of vortices in figure 8 (c) : their magnitudes 
have been increased eightfold because, being of an intermediate type, they are very 
weak, nearly motionless and not discerned easily without a local magnification. 

We now make an attempt to interpret some properties observed in figure 8. The 
general appearance of figure 8 (a)  is similar to that for a two-cell solution in a curved 
circular pipe with the centre of the vortex situated almost directly above the origin, 
a characteristic feature for low-Dean-number flows. As usual, this pair of counter- 
rotating vortices alters the pattern of axial velocity contours in figure 8 ( b ) .  The high- 
velocity region is shifted outward to the outer bend and squashed to look like a 
kidney with twin peak velocities, one in each half, instead of the single peak in a 
straight pw 10 duct. The magnitude of these two peak velocities is less than that in 
a corresponding straight duct (table 2). 

Figures 8(c)  and 8 ( d )  illustrate the cross-flow vectors and w contour lines a t  
D = 640, for an intermediate-type solution, defined to be a solution whose state 
variable lies along the locus for two-cell solutions (figure 7)  and yet possesses two 
pairs of vortices in the cross-flow plane, where the second pair is extremely weak. 

The flow patterns in figures 8 ( e )  and 8 ( f )  with D = 3000 have the most striking 
features. Both pairs of vortices are now of nearly equal strength with the second pair 
occupying a fairly large area a t  the outer bend. Two swiftly moving currents exists 
at the interfaces to divide two counter-rotating cells. The first pair of vortices moves 
further inward and upward to cause isovelocity contours in figure 8 (f) to make sharp 
turns in the second quadrant. Because of the high intensity of the second pair, those 
kidney-shaped high-velocity regions observed in figures 8 ( b )  and 8 ( d )  can no longer 
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(a) 

(4 0 
FIQURE 8. Cross-flow vectors and axial velocity contours for three representative solutions in a 
curved pw 10 duct. (a), ( b )  Two-cell solution at D = 400; (c), (d )  Intermediate-type solution a t  
D = 640; ( e ) ,  (A Four-cell solution a t  D = 3000. (Contour lines of 16 increments; maximum values: 
w,, = 77.49 in ( b ) ,  110.78 in (d ) ,  313.79 in (f).) 

pw 10 duct Circular pipe 

('Wmax)c (Wrnax)c 

D (Wrnsx)c (wrnax), (wmax)s (Urnaxlc (Wmax). (wrnax), 

300 62.59 88.33 0.709 57.75 75.0 0.770 
500 91.84 147.21 0.624 83.49 125.0 0.668 

1000 140.81 294.42 0.478 "137.00 250.0 0.548 
3000 313.79 883.26 0.355 '303.70 750.0 0.405 
5000 454.25 1472.1 0.309 "434.62 1250.0 0.348 

a Values obtained from four-cell solutions. 
Subscripts c and s denote curved and straight respectively. 

TABLE 2. Comparison of peak velocities in curved (8 = 0.02) and straight pipes 
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FIGURE 9. Axial velocity profiles in a circular pipe at D = 2000: -, 2-cell; --, 4-cell. 
(a)  y = 0,  ( b )  y = 0.25. 

m 

Duct Two-cell Four-cell 
shape D solution solution 

Circle 2000 135.50 136.63 
pw 10 570 "57.24 56.31 
Square 650 63.03 60.96 

a An intermediate-type solution. 

TABLE 3. Comparison of mean axial velocities of two- and four-cell solutions in different pipes 
(8  = 0.02) 

be maintained and must bulge sharply inward. The severe contortion of isovelocity 
contours is perhaps also the cause of a large decrease in peak velocities. 

To see the decrease of these peak velocities in curved pipes, some calculated results 
are listed in table 2. The ratio of peak velocity in a curved pipe to that in a 
corresponding straight pipe under the same pressure gradient is seen to decrease as 
D increases, and the descent is steeper at lower Dean numbers than at higher 
numbers. When comparing to a circular pipe, we find that the decrease in a pw 10 
duct is approximately 10% larger than that in a circular pipe. 

Normally we would think that the presence of an additional pair of cross-flow 
vortices would hinder the fluid motion and thus increase the friction. For square or 
near-square ducts this assumption seems to be correct, and the mean axial velocities 
in table 3 bear this out. Unfortunately the computed results for a circular pipe belie 
this assumption as shown here and also in table 1. We feel that this reverse trend is 
hard to explain, owing perhaps to an inadequate understanding of the loss 
mechanisms in secondary flow as indicated by Hawthorne (1990). An attempt is 
nonetheless made to look for the source of this departure by providing several profiles 
in figure 9. 

There are two w-profiles plotted along the symmetric axis, y = 0, in figure 9 ( a )  ; the 
dashed line is for the four-cell solution at D = 2000, whose integrated area is seen to 
be smaller than the integrated area of the solid line (two-cell solution also at 
D = 2000). However, as we move away from the symmetric axis, this trend reverses. 
For instance, the w-profiles plotted along y = 0.25 in figure 9 (b)  (a horizontal line at 
a a distance above the symmetric axis) indicate that the integrated area of the dashed 



534 H .  C. Kuo 

line is now somewhat larger than that of the solid line. When y > 0.25, this trend is 
found to persist. Thus, it is conceivable that the total integrated area for the dashed 
lines eventually becomes larger than that for the solid line in spite of a large deficit 
near the symmetric axis. If similar profiles are plotted for solutions in a square duct 
a t  D = 570, no such reversal is detected. 

7. Transition of solution structure 
We now consider one of the main aspects of this study, shown in the composite 

state diagram in figure 10. The configurations in this diagram range from a near 
square (n = 10) to a pw 1.75 duct (n = 1.75) and the Dean numbers range from 300 
to 5000. Because of the solution structure, some loci will terminate prior to D = 5000 
(the disappearance of two-cell solutions), and others may not begin until D > 300 
(the non-existence of four-cell solutions). Notice that no computer runs were made 
in the range D = 0 to 300. 

In  the group of two-cell solutions one observes that the solution loci for the pw 10, 
pw 3 and pw 2.5 ducts all terminate a t  D < 5000, but as n decreases the locus 
lengthens, which means that the hysteresis region expands. This process of expansion 
is, however, very slow between n = 10 and n = 3 in contrast to the fairly rapid 
change of geometry in this range. Even a t  n = 2.5, which is rather similar to a circle, 
the two-cell solution terminates a t  D x 4250. However, as soon as n becomes 2, the 
extent of two-cell solutions is much expanded and continues to D = 30000 a t  least 
(Soh & Berger 1987). This sudden expansion may be construed as evidence that the 
flow process undergoes a morphogenesis, evolving from one structure to another 
through a transcritical bifurcation point at a distinct value of n (a referee’s 
comment). If this process holds, the hysteresis will disappear abruptly a t  the 
transcritical point and the solution branches become disconnected, somewhat similar 
to the bifurcation loci shown in figure 2 or 3 of Schaeffer (1980). 

In  order to  see the flow properties in a cross-section thinner than a circle, we made 
additional computations in a pw 1.75 duct (n = 1.75). As expected, the upward trend 
for the solution loci continues and it is now above the locus for a circular pipe in 
figure 10. A higher location of a two-cell locus implies that the velocity vector a t  
x = 0.9 on the plane of symmetry for the same Dean number is larger than that of a 
lower position. This does not, however, imply that the vortex intensity of the former 
is higher than that of the latter. The opposite may actually be true. The difference 
appears to come from the disposition of vortices caused by the cross-sectional shape. 
For instance, the vortex in figure 11 (a )  is more concentrated than that in figure 
11 ( b ) .  As a result, the velocity components decay faster than those in figure 11 ( b ) ,  
resulting in a smaller u a t  x = 0.9 and y = 0. 

I n  principle, loci for two-cell solutions will all eventually converge to  the point 
u = D = 0. The curves drawn in figure 10 seem to bear this out. 

From the group of four-cell solutions one finds that, as n decreases, the solution 
locus moves to a higher position in the state diagram, and a t  the same time the 
estimated Dean number for incipiency of a four-cell solution becomes larger. One also 
notices that the magnitudes of u a t  incipient points are almost equal. This is 
probably due to the inability of the present method to  deal with singularities. The 
present computations for these solutions stopped a t  D = 5000, but the indications 
are that this is not the upper limit and it can be much higher. 

In  Winters’ analysis for a curved square duct the two-cell solution locus and the 
four-cell one are connected by another locus shown as S, in figure 4. Since the pw 10 
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D 

FIGURE 10. State diagram showing solution loci of various cross-sections: -.-, pw 1.75; 
-, pw 2 ;  __. .~ , pw 2.5; --, pw 3 ;  - - - ,  pw 10. 0, Incipiency of four-cell solutions; 0,  
termination of two-cell solutions. 

FIGURE 11.  Cross-flow velocity vectors of two-cell solutions at D = 4000. (a )  Curved pw 2.5 
duct; ( b )  curved pw 1.75 duct. 

is a near square configuration, it is assumed that there also exists an intermediate 
locus similar to S, in figure 7. However, no such intermediate locus is indicated by 
Daskopoulos & Lenhoff in a curved circular pipe. This perhaps lends further support 
to the assumption that the flow process undergoes a morphogenesis a t  n w 2. 

8. Computation in a complete cross-section 
All previous solutions are symmetric, obtained in a half-cross-section with 

symmetry conditions imposed on the centreline. If these conditions are removed and 
the computation is done in a complete cross-section, it is known that four-cell 
solutions are unstable (see Goering, Humphrey & Greif 1990, for example). We, of 
course, experienced the same difficulty, but in the present case these unstable 
solutions develop slowly. Using a curved circular pipe as an example, the 
development of an unstable solution is as follows. The initial condition for the 
computation is the two symmetric four-cell solutions patched together along the 
centreline. After a number of iterations, asymmetry begins to develop, and the 
pattern becomes distorted, intensifies and oscillates about the centreline (slosh). This 
sloshing will eventually subside and a two-cell structure emerges. Incidentally, the 
word instability here refers to the inability to maintain its original structure and does 
not imply an uncontrolled growth of solution. 

Since it appears that the breakdown begins with a sloshing, a four-cell structure 
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FIGURE 12. Cross-flow velocity vectors in a circular pipe with a splitter plate at the outer bend 
in the limit of negligible curvature: (a) D = 2000; ( b )  D = 4000. 

may thus be preserved, if sloshing can be controlled. Based on this assumption, a 
splitter plate of approximately 15 to 25% of the duct diameter is introduced a t  the 
outer bend along the centreline to function as a stabilizer. Several solutions for this 
configuration with various length of the splitter plate were obtained and two are 
plotted in figure 12 for D = 2000 and 4000. In  these two examples the splitter plate 
measures approximately 15% of the pipe diameter. This length can be increased and 
the flow pattern will change somewhat, but if it is reduced to about 10% of the 
diameter, sloshing occurs and computation will not converge. 

It is seen in figure 12 that a splitter plate also acts as a means to channel the cross- 
flow into a jet-like stream, which collides with the return flow from the inner bend. 
This becomes fairly clear a t  D = 4000. If an agitation of this kind is a desirable 
feature for enhancing mixing or heat transfer, a splitter plate could be a useful 
device. The friction coefficient will, however, increase owing to the presence of an 
additional surface. The increase in these two examples turns out to be also 
approximately 15% (see figure 14). 

It is known that the onset of turbulence is delayed in a curved pipe. This is often 
attributed to the presence of a secondary flow which enhances mixing and thus 
retards transition. If this is the primary reason for delaying, it then seems plausible 
that maintaining a four-vortex structure will further delay transition because of a 
higher degree of mixing. 

A few trial runs for higher Dean numbers were also made. The indications are that 
as D increases to 5000, a splitter plate of 15% of the duct diameter is no longer 
capable of controlling sloshing, which persisted throughout the entire iteration 
process, although there was no emergence of a two-cell structure. 

A two-cell solution is known to be stable in a complete cross-section. Our 
computation based on limited examples seems to show that a solution of the 
intermediate type is also stable in a complete cross-section. 

When the Dean number is small, say D = 500, insertion of a short splitter plate 
does not generally change the flow from a two- to four-cell structure. However, if it  
is about 1000, both flow structures are possible, depending on the length of the 
splitter plate. 
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FIGURE 14. Effect of curvature on friction ratios. Lines for E = 0.02 solutions; symbols for E = 0.2 
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9. Effect of curvature 
The previous computations were all done with small curvature ratios ( E  = 0 and 

0.02), and so the effect of curvature on the flow properties should be examined, 
especially with regard to state diagrams. For this reason, computations are also made 
with E = 0.2 in both circular and pw 3 ducts, and are plotted in figure 13. This figure 
shows that the curvature effect on the state diagram is apparently small in spite of 
a tenfold increase in E ,  though the solution loci with larger E are all somewhat higher 
than those with smaller E .  

These results also enable us to see the curvature effect on friction ratios, illustrated 
in figure 14. The usual finding that a curvature exerts only a minor influence on the 
friction is also evident here. The somewhat unusual property mentioned earlier that 
the presence of an additional pair of vortices actually increases the flux slightly can 
now be seen graphically. In addition, one finds that the friction ratio for a circular 
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pipe is lower than that for a pw 3 duct. (The evidence from a few other computations 
seems to indicate that a circular pipe has a lower friction ratio than other cross- 
sections.) 

Soh & Berger (1987) among others also investigate the curvature effect on friction 
ratios in a circular pipe with two-cell solutions. Their examples are for E = 0.01, 0.1 
and 0.2. A comparison of the present results with their case of E = 0.2 shows signs of 
differences, with the present results consistently lower than theirs. For the case of 
E = 0.01, only an approximate comparison is feasible, because our examples are for 
E = 0 and 6 = 0.02. This approximate comparison shows, however, a good agreement. 

10. Concluding remarks 
A study of bifurcation structure from a somewhat different viewpoint is presented 

here. The governing equations are solved numerically by an iterative finite-difference 
method, and the solutions are plotted to show the loci in the state diagrams. We 
examine the transition of the solution structure from a square to a circular duct and 
reconcile their differences. This effort is, however, limited to one branch of the 
solution loci among several investigated by Winters. Although other branches are 
not at present known to exist in a curved circular pipe, it should be of interest to see 
how they evolve as the geometry changes and whether they all vanish as n + 2. The 
question of whether four-cell solutions are stable or can be realized experimentally 
posed by, for example, Goering et al. (1990) is only dealt with briefly here ; a further 
investigation would be useful. 

It is a pleasure to thank Dr A. Sidi for making his acceleration code available and 
Dr P. G. Huang for discussions about the QUICK method. 
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